Comparing antimicrobial catheters based on spectrum of activity, preventing adherence and longevity

A catheter-related infection starts with a potential pathogen adhering to the catheter. Adherence can occur even on an antibiotic catheter when a zone of inhibition (ZOI) is present.1 That’s why an antimicrobial catheter’s efficacy should be based on more than zone size:

- Effectiveness against a broad spectrum of pathogens
- Ability to prevent adherence
- Longevity of the antimicrobial agents
- Protection of critical catheter surfaces

To illustrate this, here are head-to-head comparisons of the performance of chlorhexidine/silver sulfadiazine (CSS) catheters and minocycline/rifampin (MR) catheters against three common sources of catheter-related bloodstream infection (CRBSI).2

Candida albicans

The MR catheter produces no ZOI against *C. albicans*; the CSS catheter does. At least two studies have reported similar results—and found that antibiotic catheters may actually encourage *Candida*.3,4 For example, Wright et al. notes, “… antibiotic-coated central lines were not associated with any benefit in this critically ill patient population. They were associated with increased *Candida* colonization and the development of rifampin resistance to *Staphylococcus epidermidis*.”3 While in a multicenter trial in Spain, León et al. found that MR catheters were associated with “a significant increase in Candida spp.”4

Staphylococcus epidermidis

Both catheters maintain a ZOI at day seven (the CSS catheter yields significant antimicrobial effect against *S. epidermidis* up to 46 days5,6), yet CSS’s ZOI is smaller. Tambe et al. noted a similar phenomenon. In their study, CSS catheters prevented bacterial adherence; “… on the other hand, the antibiotic catheter showed adherence despite a larger zone size. These results indicate that unlike in the case of antibiotic catheters, the relatively smaller zones of inhibition with antiseptic catheters do not appear to be predictive of lack of efficacy.”1 There are other downsides to using MR catheters, including:

- Increased *Candida* colonization,4 which has a higher mortality rate than *S. epidermidis* (see chart above)
- Encouraging rifampin resistance3

Pseudomonas aeruginosa

The CSS catheter maintains a ZOI through day seven, while the MR catheter does not. This is meaningful for three reasons. First, as a group, gram-negative bacilli (including *P. aeruginosa* and *Enterobacteriaceae*) account for 14% of CRBSIs.7 Second, *P. aeruginosa* is noted for its resistance to antibiotics; the few that are effective include fluoroquinolones, gentamicin and imipenem, and even these do not work against all strains.8 Third, MR has no effect on *P. aeruginosa* growth.9,10
Antiseptics
Arrow’s use of antiseptics, rather than antibiotics, provides cidal activity, eliminating the potential for antibiotic resistance. Is this a real concern? As stated in a recent review of commercially available antimicrobial catheters, co-authored by one of the inventors of the MR technology, the authors state, “…there is a potential for these devices to select for resistant gram-negative bacteria and Candida organisms, leading to breakthrough bacteremias and fungemias.”

Spectrum of activity
Arrow’s two powerful antiseptic agents, chlorhexidine and silver sulfadiazine, result in a spectrum of activity against the wider range of clinically significant potential pathogens. While MR catheters perform well against gram-positive bacteria, many investigators have found that there was limited or no activity against gram-negative bacteria and Candida organisms, and even resulted in the emergence of rifampin-resistant Staphylococcus epidermidis.

Unique hub protection
Arrow’s AGB+catheters are unique in protecting all critical catheter surfaces both outside and inside the catheter. In addition to intraluminal protection, AGB+catheters alone offer broad spectrum chlorhexidine protection for the entire fluid path, including both the extension lines and the hubs. Over 20% of CRBSI are derived from intraluminal contaminants, and since hubs are repeatedly accessed during catheter use, they pose a significant risk of becoming colonized with pathogens. Arrow’s AGB+catheters are the only antimicrobial catheters currently available with hub and extension line protection.

ARROWgard Blue PLUS® exhibits antimicrobial activity out to at least 46 days and provides a broader spectrum of antimicrobial activity than MR catheters against two of the most common and virulent, potentially pathogenic organisms.

REFERENCES:

PATENTS:
ARROWgard/ARROWgard Blue PLUS®: U.S. Patent Nos. 5,019,096, 6,708,024 and 6,872,195
For more information on reducing risk for patients and healthcare workers, visit FirstOfItsKind.com

Caution: U.S. federal law limits this device to sale by or on order of a physician. Contents of unopened, undamaged package are sterile. Disposable. Refer to package insert for current warnings, indications, contraindications, precautions and instructions for use.

For additional reference information contact Teleflex Incorporated.

www.teleflexmedical.com