AutoCAT®2 Series
Intra-Aortic Balloon Pump
Timing, Triggering, and Troubleshooting
Arrow International
AutoCAT®2 Series Intra-Aortic Balloon Pump

Timing, Triggering and Troubleshooting

The Arrow AutoCAT®2 WAVE™ Intra-Aortic Balloon Pump

U.S. Patent No. 6,258,035
Introduction to Intra-Aortic Balloon Pumping

This program is designed for experienced health care professionals directly responsible for the care of patients needing intra-aortic balloon pump (IABP) therapy. The participants should have a basic understanding of cardiac anatomy, physiology and hemodynamics. Participants should have experience with hemodynamic monitoring and its implications.

Information and instructions given in this manual in no way supersede established medical procedures concerning patient care. Best practice as determined by the medical community is always to be observed. In each case, the user must determine whether the application of the information provided is appropriate to his/her particular clinical setting.

Hands-on time will be provided to allow participants to set up the console and troubleshoot various alarm situations.

Participants are also provided with a competency performance checklist and a post test to assist in maintaining proficiency.

Document Specification

When making reference to or requesting additional copies of this document, please note the following Part Number: A2W-TG, Revision 2.

U.S. Patent No. 6,258,035

Caution: U.S. Federal Law limits this device to sale by or on order of a physician. Contents of unopened, undamaged package are sterile. Disposable. Refer to package insert for current warnings, indications, contraindications, precautions, and instructions for use.
# Table of Contents

1. Two Hour Program Schedule: AutoCAT®2 Series IABP .............................. 1
2. Program Description .................................................................................. 1
3. Program Objectives .................................................................................. 1
4. Insertion of Fiber Optic IAB - FiberOptix™ ............................................. 3
5. Modes of Operation .................................................................................. 5
6. The Three P’s of Pumping ....................................................................... 6
   - Power ON ......................................................................................... 6
   - Patient Connections ........................................................................... 7
   - ECG ................................................................................................. 7
   - ECG Cables .................................................................................... 7
   - ECG SELECT .................................................................................. 8
   - Arterial Pressure ............................................................................. 9
   - AP Cables ...................................................................................... 9
   - AP SELECT ................................................................................... 10
   - Balloon ......................................................................................... 12
   - Pump ON ...................................................................................... 13
   - Initiate Pumping ............................................................................ 13
7. Timing ...................................................................................................... 14
   - Comparison of Arterial Pressure Signal: Fiber Optic and Transducer . . 14
   - WAVE™ Inflation Timing .................................................................... 14
   - Timing Guidelines ........................................................................... 15
   - Timing Errors ................................................................................ 16
   - R Wave Deflation ........................................................................... 18
8. Trigger ..................................................................................................... 19
9. Troubleshooting ....................................................................................... 21
   - Balloon Pressure Waveform ........................................................... 21
   - Class 1 Alarms ............................................................................... 22
   - Class 2 Alarms ............................................................................... 26
   - Class 3 Alerts ............................................................................... 28
   - Class 4 Alerts ............................................................................... 30
10. Reference List .......................................................................................... 33
11. Skills Checklist ....................................................................................... 39
12. Self Evaluation Tool (Self-test) ............................................................... 43
13. Program Evaluation ................................................................................ 45
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 8:05</td>
<td>Registration and Welcome</td>
</tr>
<tr>
<td>8:05 – 8:15</td>
<td>Start-up Operations</td>
</tr>
<tr>
<td>8:15 – 8:45</td>
<td>Timing</td>
</tr>
<tr>
<td>8:45 – 9:00</td>
<td>Triggering</td>
</tr>
<tr>
<td>9:00 – 9:30</td>
<td>Utilizing the Balloon Pressure Waveform in Troubleshooting</td>
</tr>
<tr>
<td>9:30 – 9:50</td>
<td>Set-up and Operations</td>
</tr>
<tr>
<td>9:50 – 10:00</td>
<td>Post test and Evaluation</td>
</tr>
</tbody>
</table>

2. Program Description

The primary focus of this two hour session is the technical aspects, operation and troubleshooting of the AutoCAT®2 Series Intra-Aortic Balloon Pump (IABP). Participants should have previous IABP experience and a sound working knowledge of the anatomy, physiology and theory of IABP therapy.

3. Program Objectives

1. Review FiberOptix™ IAB preparation, zeroing and insertion.
2. Identify the differences between AutoPilot™ and Operator modes.
3. Identify improper timing and appropriate corrective action.
4. Identify the most appropriate trigger signal selection for a given patient situation.
5. Identify the alterations that would occur in the Balloon Pressure Waveform for two alarm conditions.
6. Demonstrate the set-up and operation of the IABP utilizing the skills checklist.
FiberOptix™ IAB Preparation, Zeroing and Insertion

Insertion of the FiberOptix™ intra-aortic balloon catheter should be performed as any other IAB catheter with the exception to ZERO the fiber optic sensor to atmosphere immediately prior to insertion.

The Sterile Operator should hand off the fiber optic sensor connector and CAL Key prior to arterial insertion. The IAB will automatically zero; continue catheter insertion as usual. (Note: The Fiber optic status indicator, on the left side of the screen, will turn green when the sensor has been zeroed.)

Alternately, the fiber optic may be manually zeroed by pressing AP SELECT (verify the FIBER OPTIC indicator next to the key is illuminated). Then press the soft key, at the bottom of the screen, under the message FOS ZERO.

Light bulb Icon Legend

- Black light bulb with blue square: FiberOptix™ IAB not connected
- Blue light bulb: FiberOptix™ IAB not zero’d prior to insertion
- Green light bulb: FiberOptix™ IAB zero’d prior to insertion
- White light bulb: FiberOptix™ IAB cal value manually adjusted
- Red “X” through light bulb: FiberOptix™ unavailable
Preparation of IAB for insertion

- Attach the one-way valve to the IAB quick connector.
- Connect the syringe to the one-way valve.
- Apply full vacuum.
- DO NOT remove the one-way valve until IAB is fully inserted into the patient.
- Do not remove IAB from tray until time to insert into patient.
- Do not remove stylet from central lumen until IAB is removed from tray.
- Flush through central lumen with heparinized saline just prior to insertion.
- If IAB is to be inserted through a sheath, remove pre-mounted hemostasis device.

Zeroing the FiberOptix™ (FiberOptic Sensor)

- Pass the blue slide connector and CAL Key to the non-sterile IABP operator.
- Connect the blue slide connector and CAL Key to the pump.
- Confirm the IAB is exposed to room air.
- Wait for Auto Zero to occur (average time: approximately 15 seconds).
  • Alternately, press AP Select, select fiber optic, press FOS Zero.
- Confirm FOS icon turns green.
- Insert IAB.

Note: If FOS icon does not turn green or the IAB must be inserted urgently, skip the zeroing step and proceed to IAB insertion.

After IAB is positioned in the patient

- Aspirate blood from central lumen and gently flush with approximately 3cc heparinized saline.
- Immediately connect pressurized heparinized saline flush system to central lumen.
- Remove one-way valve and attach drive line tubing.
- Connect IAB to pump.
- Suture at both the sheath hub and catheter site.
- Tape fiber optic cable to driveline tubing in several places.
The AutoCAT® 2 Series IABP offers two distinct modes of operation:

**AutoPilot™ MODE**

In AutoPilot™ mode the console selects the ECG source, AP source, trigger, and timing.

1. Console scans all available ECG leads continuously. If the current lead selected is lost or noisy, the console will select another available lead. If another lead is significantly better for triggering than the current lead, the pump will change leads. If the clinician desires, he/she can change the ECG lead, source, or gain.
2. AP source is selected by the console but can be changed by the clinician. On the AutoCAT® 2 WAVE™, if the Fiber Optic sensor is connected and available, it will always be selected since it has the most optimal waveform and allows for WAVE timing to be selected.
3. Console selects the available trigger modes based on patient condition and signal availability.
4. All timing settings and adjustments are under control of the console.

If, at anytime, the clinician prefers to take control of trigger selection or timing this can be accomplished by selecting OPERATOR mode.

**OPERATOR MODE**

This is the mode of operating common to all other models of intra-aortic balloon pumps. The clinician makes all the choices regarding ECG source and lead, AP source, triggering, and timing.

1. Once the initial timing is set, the console will automatically adjust for changes in heart rate.
6. The Three P’s of Pumping

1. Power ON

   a. Applies power to the system.

   Pump should be plugged into an AC outlet. The green indicator LED below the power switch denotes AC power is being received by the pump. The amber indicator LED denotes that the battery is at least 80% charged.
2. Patient Connections

ECG

ECG Cables

a. Skin Lead Cable

1. In use when SKIN selected on keypad, next to ECG Select.
2. Must use either a 4 or 5 lead cable.
3. For 4-lead cable, the lead choices are I, II or III.
4. For 5-lead cable AutoPilot™ will select either I, II, III or V.
   AVR, AVL and AVF may be selected by the clinician.
5. Lead selected is highlighted in white and displayed in upper left corner of LCD screen.

b. Phono to Phono Cable (Monitor Cable)

1. In use when MONITOR selected on keypad.
2. Actual lead choice is made on the bedside monitor.
ECG SELECT

a. ECG SELECT provides selection for LEAD, input source, gain mode and level.

b. This key can be used in either AutoPilot™ or Operator mode. If you select a lead that is not good or not available, in AutoPilot™, your choice will be overridden.

1. To change input source press ECG SELECT twice.

2. To change lead, press ECG SELECT once. Press key under desired LEAD label. To select the alternate lead II/AVL, press the key under the desired lead again. To switch gain mode press key under desired label. DECREASE/INCREASE GAIN keys can be used with AUTO or MANUAL GAIN. If AUTO is selected, the GAIN change is only valid until lead is changed.

Note: It is highly recommended to use ECG skin leads when AP fiber optic is selected.
Arterial Pressure

AP Cables

A. Fiber Optic Cable

1. Exclusive to the AutoCAT® WAVE™ IABP.

2. In use when FIBER OPTIC is selected on the keypad.

B. Transducer Cable

1. In use when XDUCER is selected on the keypad.

C. Monitor Cable

1. In use when MONITOR is selected on the keypad.
AP SELECT

a. AP SELECT provides selection for AP SOURCE, SCALE, AP ALARM, ZERO and CAL.

b. This key can be used in either AutoPilot™ or Operator mode. If you select an alternate AP source while the fiber optic sensor is connected to the pump, AutoPilot™ will return to FIBER OPTIC after a brief time.

1. To change input source press AP SELECT twice.

2. To change scale, set AP alarm, zero or calibrate, press AP SELECT once. Press key under desired label to select function.

AP SCALING

- AUTO is the preset.

- To set scale manually press AP SCALING once.

- Press AP SCALING AUTO to select MANUAL scaling.

- Press MANUAL SCALES.

- Press soft key under desired scale.
AP ALARM

- Press AP ALARM OFF key. This will toggle the alarm system to ON.
- Select AP parameter for alarm: MAP or AUG.
- Preset MAP limit is 70mm Hg. Preset AUG limit is 100mm Hg.
- Verify alarm limit. Alarm limit can be adjusted in 5mmHg increments.

FiberOptix™ ZERO and MAP CAL

- The fiber optic sensor will zero automatically if it is connected to the pump prior to insertion.
- To zero manually, connect FOS sensor and CAL key then press FOS ZERO before the catheter is inserted into the patient.
- For Auto Zero to occur (average time: approximately 15 seconds), the FOS icon (light bulb) will turn green after the ZERO is complete.
- If the fiber optic sensor was not zeroed before insertion, the MAP value may be adjusted to match the pressure from a transduced arterial pressure source.
  - Select FOS CAL.
  - Use either the <FOS MAP or >FOS MAP to adjust the MAP value in the hemodynamic section of the display screen to the desired value. The MAP can be adjusted in increments of 5mmHg. The waveform is adjusted as the < > keys are pressed.
  - If the adjustment was made in error, press the CANCEL key.
  - If the FOS MAP value is changed, the FOS icon will change to white.
6. The Three P's of Pumping

ZERO Transducer

- Verify level of the transducer to the patient’s phlebostatic axis; open transducer to air.

- Press AP SELECT key once, then press soft key under XDUCER ZERO.

- Close transducer; observe for return of arterial pressure waveform.

(Note: Transduced AP does NOT need to be zeroed to use as a trigger source.)

Balloon

a. Push balloon connector in firmly, right side up or upside down – it does not matter.
   - 30cc IAB - white connector
   - 40cc IAB - blue connector
   - 50cc IAB - orange connector

b. Balloon volume is displayed above the helium bar display.
3. Pump ON

Verify:

- The console can not pump without a trigger. Trigger acceptance is indicated by the white overlay on the ECG, flashing heart symbol and accurate Heart Rate.

- Trigger mode displayed below HR.

- Helium gauge to ensure adequate amount of helium to fill the drive system.

Initiate Pumping

Press PUMP ON

The first time ON is pressed after power up, the pump will fill the drive with helium, perform one purge cycle followed by nine mixing beats. This will be repeated two times to optimize helium concentration. Pumping will continue uninterrupted.
7. Timing

Difference between Fiber Optic Arterial Pressure Signal and Transducer

The Fiber Optic AP Signal produces a high fidelity waveform that is available to the IABP earlier than fluid filled AP signals. When the inflation timing is correct on the fiber optic arterial pressure waveform it may look early on the fluid filled line because of the transmission delay in fluid systems. Since the fiber optic AP waveform is a real time signal, there is no delay.

WAVE™ Inflation Timing

Windkessel Aortic Valve Equation (WAVE™) is exclusive to the AutoCAT™2 WAVE™ IABP in AutoPilot™ mode. The fiber optic arterial pressure signal is converted to an aortic flow signal inside the pump. The aortic flow waveform is then used to set inflation of the balloon in synchrony with Aortic Valve closure.

Compare inflation to the most unassisted beat Dicrotic Notch.
Timing Guidelines for assessment and setting timing in Operator Mode.

**Inflation**

GOAL: To produce a rapid rise in aortic pressure (optimize AUG), thereby increasing O$_2$ supply to coronary circulation.

Rule #1. Inflate just prior to the DN (this should result in AUG>SYS).

**Deflation**

GOAL: To reduce aortic end diastolic pressure (afterload), thereby decreasing MVO$_2$ while improving CO (cardiac output).

Rule #2. ADIA$\leq$DIA

Rule #3. ASYS$<$SYS
7. Timing

Timing Errors

Early Inflation

IAB is inflated well before actual DN (Aortic Valve closure). Violates Rule 1 for inflation.

Result: Premature closure of Aortic Valve. Reduced stroke volume/CO. Increased LVED volume. Increased workload of the left ventricle, related to increased wall tension.

Late Inflation

DN is visible between points SYS and AUG. Violates Rule 1 for inflation.

Result: AUG less than optimum. Decreased perfusion pressure and volume to coronary arteries. Reduced augmentation time.

Early Deflation

ASYS = SYS Violates Rule 3 for deflation. May see “U” shape at ADIA

Result: No afterload reduction.

Late Deflation

ADIA>DIA Violates Rule 2 for deflation.

Result: Increased workload of the left ventricle. Increased MVO2.
7. Timing

Timing can only be adjusted by the clinician when the pump is in Operator mode.

Other control keys used in timing assessment:

CURSOR moves magenta line up and down the screen to aid in comparing timing landmarks.

DISPLAY FREEZE key freezes and unfreezes the waveforms.

ASSIST RATIO
7. Timing

R Wave Deflation

R wave deflation (also known as “real time” deflation) uses the next occurring R wave on the ECG to deflate the balloon. It provides the most consistent deflation in irregular rhythms. The AutoCAT®2 Series IABPs utilize R wave deflation when AFIB trigger is selected.

R wave deflation generally deflates the IAB later than conventional deflation. This may sometimes result in ADIA > DIA.

To assess if deflation is late compare the systolic upstroke of the assisted beat with that of the unassisted beat. If they are equal and the hemodynamics are stable then deflation is generally OK.

If the assisted systole has less of a slope than the unassisted systole or the assisted systole is severely depressed then deflation is late. If the pump is in AutoPilot” turn ARRHYTHMIA TIMING off. If the pump is in Operator mode, select Peak trigger and adjust deflation as desired.
Trigger Modes
It is necessary to establish a reliable trigger signal before balloon pumping can begin. The computer in the IAB console needs a stimulus to cycle the pneumatic system which inflates and deflates the balloon. The trigger signal tells the computer that another cardiac cycle has begun. In most cases it is preferable to use the R wave of the ECG as the trigger signal. Back-up options are the arterial pressure waveform and pacer spikes.

AutoPilot” automatically selects the best available trigger. If control of the trigger mode is desired, select Operator mode.

ECG Pattern
Pattern analyzes the height, width and slope of a positively or negatively deflected QRS complex. The width of the R wave must be between 25-135msec. Widened QRS complexes may not be recognized, such as bundle branch blocks. Rejection of pacer spikes is automatic. This is AutoPilot”’s trigger of choice when the rhythm is regular, the HR is less than 130bpm and the QRS complex is normal width.

AutoPilot”: HR < 130 and no arrhythmia.

ECG Peak
Peak analyzes the height and slope of a positively or negatively deflected QRS complex. Rejection of pacer spikes is automatic. This is AutoPilot”’s choice when the rhythm is regular and the QRS is wide or the HR is greater than 130bpm. It will also select Peak if the rhythm is irregular and ARRHYTHMIA TIMING is turned OFF.

AutoPilot”: HR > 130 and/or arrhythmia with arrhythmia timing off.

AFIB
AFIB analyzes the QRS in the same manner as Peak mode. Deflation cannot be controlled by the operator as the balloon will automatically be deflated whenever an R wave is sensed. Rejection of pacer spikes is automatic. This is AutoPilot”’s choice when a rhythm is irregular and ARRHYTHMIA TIMING is ON. This will also be AutoPilot”’s choice when R WAVE DEFLATION is ON.

AutoPilot”: Any HR > with arrhythmia and arrhythmia timing on.

AP
Arterial pressure mode uses the systolic upstroke of an arterial pressure waveform as the trigger signal. It is not recommended for irregular rhythms. AutoPilot” will choose this trigger when there are no QRS complexes seen or the ECG is obscured by artifact.

AutoPilot”: Noisy or no ECG present.

VPACE
VPACE utilizes the ventricular spike as the trigger signal. This mode may be used with V or AV paced rhythms. Because the pump will only initiate an inflate/deflate cycle when a ventricular spike is sensed, it is ESSENTIAL that the patient’s rhythm is 100% paced.

AutoPilot” will only choose this trigger if there are no QRS complexes or arterial pressure waveforms seen but pacer spikes are present.

AutoPilot”: Single or dual pacer spikes with no ECG/AP.

APACE
APACE uses the atrial pacing spike as the trigger signal. This mode can only be used with 100% atrial paced rhythms. AutoPilot” will select this mode when an ECG or AP is present but not stable and the pacer is more than 100msec before the R wave on the ECG.

AutoPilot”: Single pacer with R wave > 100msec after pacer.
8. Trigger

Internal (Operator Mode only)

The balloon inflates and deflates at a preset rate regardless of the patient’s cardiac activity. This mode is only to be used in situations where there is no cardiac output and no ECG, such as cardiopulmonary bypass. The preset rate is 80 bpm but may be adjusted in increments of 5 between 40 and 120 bpm. Selection of this trigger is only available in Operator mode and must be confirmed by an additional keystroke. AutoPilot™ will NEVER choose this trigger.

To access trigger modes the pump must be in Operator mode.

1. Press the TRIGGER key.
2. Select the desired trigger mode by pressing the softkey under that trigger.
Balloon Pressure Waveform

1. Description
   The Balloon Pressure Waveform (BPW) represents the helium movement between the console and the IAB catheter. It is displayed as a calibrated, continuous waveform which allows objective assessment of counterpulsation.

2. BPW Height
   Reflects the pressure in the aorta, therefore the plateau pressure on the BPW should be within ±25mmHg of the AUG pressure.

3. BPW Width
   It is approximately the duration in which the balloon is inflated.

   ![Diagram of BPW components]
   - 1 Zero Baseline
   - 2 Balloon Pressure Baseline
   - 3 Rapid Inflation
   - 4 Peak Inflation Artifact
   - 5 Plateau Pressure
   - 6 Rapid Deflation
   - 7 Deflation Artifact
   - 8 Return to Baseline
   - 9 Duration of Balloon Cycle

   ![Tachycardia and Bradycardia waveforms]

   ![Irregular Rhythm (AFIB)]
Alarms and Alerts
An alarm may cause the pump to stop pumping. The pump will display a message on the screen to assist in troubleshooting. If the alarm reappears consistently, refer to the Operator’s Manual for further information. The Arrow IABP support line, 800-447-IABP, can also be utilized for troubleshooting assistance.

Class 1 Alarms (Automatic Response)
The following Class 1 alarms cause the AutoCAT®2 Series IABPs to:
1. Stop pumping (PUMP OFF key illuminates)
2. Deflate the balloon
3. Open vent valve
4. Initiate the audio alarm
5. Display an alarm message
6. Freeze the waveform display
7. Print approximately the last 10 seconds of BPW and AP on the strip chart recorder

Once the condition is corrected, to resume pumping:
1. Press alarm RESET.
2. Press pump ON.

Unable to Refill
### Operation Mode Possible Cause(s) Corrective Action

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AutoPilot™</strong></td>
<td>Low Helium tank pressure</td>
<td>Check HE tank. Change as needed.</td>
</tr>
<tr>
<td><strong>Operator</strong></td>
<td>Fill/Drain valves malfunction</td>
<td>Change IABP console; call field service.</td>
</tr>
<tr>
<td></td>
<td>Insufficient deflation time</td>
<td>Check timing. If deflation time is very short, i.e. there is no visible BPW baseline, select Operator mode.</td>
</tr>
<tr>
<td><strong>Operator</strong></td>
<td>Incorrect timing</td>
<td>Verify Operator mode. Adjust timing until BPW baseline is visible during IAB deflation.</td>
</tr>
</tbody>
</table>

**Possible Helium Loss**

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AutoPilot™</strong></td>
<td>Leak in Tubing or Connections</td>
<td>Perform Leak test and repair tubing as needed.</td>
</tr>
<tr>
<td><strong>Operator</strong></td>
<td>Kinked Catheter</td>
<td>Assess for kink and straighten out catheter.</td>
</tr>
<tr>
<td></td>
<td>IAB has not fully exited the sheath</td>
<td>Verify IAB has exited the sheath.</td>
</tr>
<tr>
<td></td>
<td>Balloon connector not properly seated</td>
<td>Disconnect and reconnect the IAB connector.</td>
</tr>
<tr>
<td></td>
<td>Blood in catheter tubing</td>
<td>Remove balloon immediately and insert a new IAB catheter. Disconnect driveline tubing and clamp prior to IAB removal.</td>
</tr>
<tr>
<td><strong>Operator only</strong></td>
<td>Erratic triggering or arrhythmias</td>
<td>Reduce IAB volume. Select Operator mode and select PEAK trigger. Verify timing.</td>
</tr>
<tr>
<td><strong>Operator only</strong></td>
<td>Very late deflation or early inflation</td>
<td>Change to 1:2 assist. If alarm condition does not occur, return to 1:1 and adjust timing so BPW baseline may be observed. NOTE: If HE loss continues in 1:2 assist, perform leak test.</td>
</tr>
<tr>
<td><strong>Operator only</strong></td>
<td>Erratic triggering or arrhythmias</td>
<td>Change to PEAK trigger mode. Adjust deflation earlier.</td>
</tr>
</tbody>
</table>
## 9. Troubleshooting

### Large Helium Leak

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoPilot™</td>
<td>IAB tubing disconnected from console</td>
<td>Check all IAB connections for leak. Reconnect and/or tighten as needed.</td>
</tr>
<tr>
<td>Operator</td>
<td>Gas line tubing and IAB catheter not tightly connected at catheter bifurcation</td>
<td>Tighten connection.</td>
</tr>
<tr>
<td></td>
<td>Leak at IAB connection or in Tygon tubing between console and catheter insertion point</td>
<td>Verify tight connections at all drive line tubing connection points.</td>
</tr>
<tr>
<td></td>
<td>Other helium leak. Check for blood in tubing. If blood is observed, remove and replace IAB. If no blood is observed, perform leak test.</td>
<td>Perform leak test. Replace or repair IAB as needed.</td>
</tr>
</tbody>
</table>

### High Pressure

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoPilot™</td>
<td>Kinked IAB Driveline</td>
<td>Check tubing for kinks. Find and straighten kink.</td>
</tr>
<tr>
<td>Operator</td>
<td>IAB has not exited the sheath</td>
<td>Verify IAB is out of sheath. Reposition IAB as needed.</td>
</tr>
<tr>
<td></td>
<td>Partially wrapped IAB</td>
<td>Notify physician: aspirate IAB, if no blood is present inject air into the balloon and aspirate and remove syringe from IAB connector.</td>
</tr>
<tr>
<td></td>
<td>Balloon too large for the aorta</td>
<td>Check BPW/AP relationship. Decrease IAB volume as indicated.</td>
</tr>
</tbody>
</table>
## Troubleshooting

### High Baseline

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoPilot™ Operator</td>
<td>Kinked catheter</td>
<td>Assess for kink and straighten out catheter.</td>
</tr>
<tr>
<td></td>
<td>IAB has not exited the sheath</td>
<td>Verify IAB is out of sheath. Reposition IAB as needed.</td>
</tr>
<tr>
<td></td>
<td>Partially wrapped balloon</td>
<td>Notify physician: aspirate IAB, if no blood is present inject air into the balloon and aspirate and remove syringe from IAB connector.</td>
</tr>
<tr>
<td></td>
<td>Improper IAB position</td>
<td>Verify IAB position and reposition as needed.</td>
</tr>
<tr>
<td></td>
<td>Drive System malfunction</td>
<td>Change console. Call Arrow International for service.</td>
</tr>
</tbody>
</table>

### Purge Failure

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoPilot™ Operator</td>
<td>No trigger or reliable trigger signal is lost</td>
<td>Check patient. Verify trigger bands are present on ECG. Verify flashing heart and HR corresponds to patient. Select Operator mode and choose appropriate trigger mode.</td>
</tr>
<tr>
<td></td>
<td>Helium tank not open or inserted properly</td>
<td>Check helium tank. Change as needed.</td>
</tr>
<tr>
<td></td>
<td>Helium tank empty</td>
<td>Replace HE tank.</td>
</tr>
<tr>
<td></td>
<td>Prior alarms not reset</td>
<td>Verify alarms are reset. Reset alarms as needed.</td>
</tr>
<tr>
<td></td>
<td>IAB not connected</td>
<td>Check IAB connections. Attach IAB connector.</td>
</tr>
<tr>
<td></td>
<td>Drive System malfunction</td>
<td>Change console. Call Arrow International for service.</td>
</tr>
</tbody>
</table>
### 9. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Error 1-6</td>
<td>AutoPilot™ Operator</td>
<td></td>
<td>Press alarm RESET. Press pump ON to resume pumping. If this does not correct problem then turn power OFF then ON. If alarm persists, change IABP console. Call field service.</td>
</tr>
<tr>
<td>System Error 7</td>
<td>AutoPilot™ Operator</td>
<td>Umbilical cable disconnected at control head or at console</td>
<td>Check umbilical cable connections. Reconnect as needed. If alarm persists, power pump OFF then ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control head hardware failure</td>
<td>Change control heads or IABP console. Call field service.</td>
</tr>
</tbody>
</table>

#### Class 2 Alarms (Automatic Response)

The following Class 2 alarms cause the AutoCAT™2 Series IABPs to:

1. Stop pumping (PUMP STANDBY key illuminates, system not vented)
2. Deflate the balloon
3. Initiate the audio alarm
4. Display alarm message

NOTE: Trigger loss alarms will automatically reset and pumping resumes when trigger is established.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Alarm Disabled</td>
<td>AutoPilot™ Operator</td>
<td>Standby alarm disabled indefinitely</td>
<td>Press pump OFF. Press pump ON to resume counterpulsation.</td>
</tr>
<tr>
<td>Standby longer than 3 MIN</td>
<td>AutoPilot™ Operator</td>
<td>Pump in standby for longer than 3 minutes</td>
<td>• Press RESET to clear alarm (alarm will be re-issued in 3 minutes).  • Press pump OFF.  • Press pump ON to resume counterpulsation.  • Press pump STANDBY twice to place pump in standby mode indefinitely.</td>
</tr>
</tbody>
</table>
### 9. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ECG Trigger Loss</strong></td>
<td>Operator only</td>
<td>No ECG waveform</td>
<td>• Check patient condition/rhythm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Check electrode placement and change if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Check ECG cable connections; reconnect as needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Check external monitor and IABP input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Check/change ECG lead. Check/change ECG source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waveform erratic or noisy</td>
<td>Reapply electrodes. Consider using Manual gain.</td>
</tr>
<tr>
<td>Pressure Trigger Loss</td>
<td>Operator only</td>
<td>No pressure waveform</td>
<td>Select another lead (if using external monitor, change lead on monitor). Increase size using gain controls.</td>
</tr>
<tr>
<td>FiberOptix™ AP sensor (AutoCAT™2 WAVE™ only)</td>
<td>AP sensor cable disconnected</td>
<td>Check connections and reconnect as needed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP sensor cable broken</td>
<td>Replace IAB. Select an alternate AP source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAL key not inserted</td>
<td>Insert CAL. Change IAB catheter. Use alternate AP source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or corrupted</td>
<td></td>
</tr>
</tbody>
</table>
## 9. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Trigger Loss (continued)</td>
<td></td>
<td>FiberOptix™ connector needs to be replaced.</td>
<td>Replace FiberOptix™ connection. Call field service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FiberOptix™ electronics failure</td>
<td>Replace console. Use an alternate AP source. Call field service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FiberOptix™ electronic temperature out of range</td>
<td>Replace console. Use an alternate AP source. Call field service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altitude above 10,000 ft.</td>
<td>Use an alternate AP source.</td>
</tr>
<tr>
<td>ECG Lead Fault Detected</td>
<td>Operator only</td>
<td>Poor electrode connection</td>
<td>Re-apply electrodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loose connections</td>
<td>Check ECG cable connections; repair/reconnect as needed. Replace ECG cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 lead cable detected</td>
<td>Use 4 or 5 lead ECG cable only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phono to Nicolay cable detected</td>
<td>Use a Phono to Phono cable for slaving</td>
</tr>
<tr>
<td>Trigger Loss</td>
<td>AutoPilot™ only</td>
<td>No ECG/AP/PACER trigger can be found</td>
<td>Check patient condition. Switch to Operator mode. Check ECG/AP sources and change as needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very small ECG signal</td>
<td>Use ECG gain to increase ECG size.</td>
</tr>
</tbody>
</table>
## 9. Troubleshooting

### Class 3 Alerts

The following Class 3 (information only) alerts inform you of a less serious condition. Verify the condition, but immediate action may not be required. Class 3 alerts cause the AutoCAT™2 Series IABPs to:

1. Initiate the audio alarm.
2. Display an alarm message.
3. Pumping is NOT interrupted.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP FOS Signal Weak</td>
<td>AutoPilot™</td>
<td>AP sensor failure</td>
<td>Cable is broken. Replace IAB. Select an alternate AP source.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP sensor dirty</td>
<td>Replace FiberOptix™ sensor contact.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP sensor partially connected</td>
<td>Disconnect AP FiberOptix™ sensor. Verify ‘click’ is heard when sensor is connected.</td>
</tr>
<tr>
<td>AP FOS Sensor Out of Range</td>
<td>AutoPilot™</td>
<td>Electronics operating temperature too high or too low</td>
<td>Select an alternate AP source.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td>Altitude above 10,000 ft.</td>
<td>Change altitude. Select an alternate AP source.</td>
</tr>
<tr>
<td>AP FOS Cal key Missing or Corrupted</td>
<td>AutoPilot™</td>
<td>AP FiberOptix™ key not plugged into receptacle</td>
<td>Reconnect CAL key</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td>AP FiberOptix™ CAL key damaged</td>
<td>Replace IAB. Select an alternate AP source.</td>
</tr>
<tr>
<td>Drain Failure</td>
<td>AutoPilot™</td>
<td>Condensate bottle full</td>
<td>Empty condensation bottle.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td>Drain tubing kinked</td>
<td>Straighten drain tubing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drain valve failed to open or system purge not performed</td>
<td>Initiate purge cycle by pressing pump OFF then STANDBY, wait 5 seconds for purge, then press pump ON to resume pumping. Replace IABP console. Call field service.</td>
</tr>
<tr>
<td>Deflate Marker beyond 100%</td>
<td>Operator only</td>
<td>Deflation set beyond the R wave</td>
<td>Check deflation timing. Set deflation earlier as needed.</td>
</tr>
<tr>
<td>Timing Error</td>
<td>Operator</td>
<td>Insufficient time to inflate/deflate IAB</td>
<td>Check timing; adjust as needed.</td>
</tr>
<tr>
<td>Problem</td>
<td>Operation Mode</td>
<td>Possible Cause(s)</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
<td>------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Warning: AutoPilot™ Inoperative</td>
<td>AutoPilot™</td>
<td>The AutoCAT® 2 will not run in battery mode</td>
<td>Do not disconnect the AutoCAT® 2 from AC power source. Check circuit breaker position located in helium compartment.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td>Circuit breaker turned OFF</td>
</tr>
<tr>
<td>Available Battery Power</td>
<td>AutoPilot™</td>
<td>Battery voltage low</td>
<td>Change to AC power as soon as possible to recharge batteries.</td>
</tr>
<tr>
<td>Less than 20, 10, 5 Minutes</td>
<td>Operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Running on Battery Power</td>
<td>AutoPilot™</td>
<td>AC power disconnected</td>
<td>Check AC power source. Reconnect the IABP to AC power.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td>AC power failure</td>
</tr>
<tr>
<td>Possible ECG Trigger Detected</td>
<td>Operator</td>
<td>QRS complex detected while in INTERNAL mode</td>
<td>Verify ECG is present. Change to ECG or AP trigger mode.</td>
</tr>
<tr>
<td>Weaning Step Complete</td>
<td>AutoPilot™</td>
<td>Weaning time has expired</td>
<td>Evaluate patient hemodynamics and set parameters for next weaning step. If weaning is complete, remove IAB.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial Pressure Alarm</td>
<td>AutoPilot™</td>
<td>AP has fallen below set limit</td>
<td>Check patient hemodynamics. Check for AP disconnect.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Helium Tank Pressure</td>
<td>AutoPilot™</td>
<td>HE tank is empty</td>
<td>Change HE tank.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td>HE tank is OFF</td>
<td>Open HE tank.</td>
</tr>
</tbody>
</table>
### Class 4 Alerts

The following Class 4 (information only) alerts inform you of a less serious condition. Verify the condition, but immediate action may not be required. Class 4 alerts cause the AutoCAT™2 Series IABPs to:

1. Display an alarm message.
2. Pumping is NOT interrupted.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible Late Deflation</td>
<td>AutoPilot™</td>
<td>Electromechanical delay is less than 100msec, with IAB deflation &gt; 250msec.</td>
<td>Check deflation timing. If deflation is too late and patient hemodynamics are compromised, select Operator mode and manually adjust timing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECG connected from bedside monitor. Signal delay is longer than 35msec.</td>
<td>Consider using direct patient connection with 4 or 5 lead ECG cable.</td>
</tr>
<tr>
<td>Erratic Triggering</td>
<td>AutoPilot™</td>
<td>Multiple lead switches within 1 minute and no AP signal available</td>
<td>Check ECG signal quality. Change ECG electrodes. Change ECG lead. Adjust Auto gain or select Manual gain. Select Operator mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple trigger switches between AP and Pacer within 1 minute</td>
<td>Check patient condition. Select Operator mode. Select appropriate trigger mode.</td>
</tr>
<tr>
<td>No ECG Signal Available</td>
<td>AutoPilot™</td>
<td>ECG signal is not available; IABP is triggering on AP or pacer signal</td>
<td>Check ECG connections. Reconnect ECG cable or leads. Attach another ECG source from patient or monitor.</td>
</tr>
<tr>
<td>No AP Signal Available</td>
<td>AutoPilot™</td>
<td>AP signal is not available; IABP is triggering on ECG or pacer signal</td>
<td>Check AP connections. Reconnect AP cable. Attach another AP source from patient or monitor.</td>
</tr>
<tr>
<td>ECG Lead Fault</td>
<td>AutoPilot™</td>
<td>ECG electrode disconnected</td>
<td>ECG lead or cable disconnected but pump is pumping in an alternate trigger mode. Check ECG lead contact. Check ECG cable/lead connections. Reconnect ECG cable/lead. Replace ECG electrodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 lead cable detected</td>
<td>Use 4 or 5 lead ECG cables only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phono to Nicolay cable detected</td>
<td>Use Phono to Phono cable for slaving.</td>
</tr>
</tbody>
</table>
### 9. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation Mode</th>
<th>Possible Cause(s)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhythmia Timing not Available</td>
<td>AutoPilot™</td>
<td>Arrhythmia detected but AFIB trigger cannot be selected</td>
<td>R wave deflation cannot be implemented due to user selection or patient condition. Check timing. If R wave deflation is desired, turn Arrhythmia Timing ON. Select Operator mode. Select AFIB trigger mode. Check timing.</td>
</tr>
<tr>
<td>Warning: Dead Clock Battery</td>
<td>AutoPilot™</td>
<td>Internal clock battery malfunction</td>
<td>Call field service. Pump can remain on patient.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning: Low Battery for Static RAM</td>
<td>AutoPilot™</td>
<td>Internal Static RAM battery malfunction</td>
<td>Call field service. Pump can remain on patient.</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intra-Aortic Balloon Pumping
Reference List

Theory of Counterpulsation

Berne RM, Levy MN. Cardiovascular Physiology, Sixth Edition St. Louis, MO: Mosby Year Book; 1992


Indications For Use


Intra-Aortic Balloon Pumping
Reference List (continued)


Intra-Aortic Balloon Pumping
Reference List (continued)

Complications Associated With Counterpulsation


Fiber Optics in Balloon Pump Therapy


Intra-Aortic Balloon Pumping
Reference List (continued)


Insertion Techniques


Nursing


Beaver KE. Intra-Aortic Balloon Pump Therapy in the Cardiac Catheterization Lab Part I. *Cath-Lab Digest* 3(2)(July/August 1995)

Beaver, KE Intra-Aortic Balloon Pump Therapy in the Cardiac Catheterization Lab Part II. *Cath-Lab Digest* 3(4)(March/April 1995)


Intra-Aortic Balloon Pumping
Reference List (continued)


Transport


**ARROW INTERNATIONAL**  
*Intra-Aortic Balloon Insertion*  
Procedure Competency Checklist

<table>
<thead>
<tr>
<th>Name: ____________________________</th>
<th>Date: __________________________</th>
</tr>
</thead>
</table>

**SKILL** | **YES** |
---|---|
1. Balloon Sizing Recommendations | |
   - 30cc: 4' 10" – 5' 4"
   - 40cc: 5' 4" – 6'
   - 50cc: > 6' |
2. Sheath Options | |
   - A. Sheaths with side-port |
   - B. Sheaths without side-port |
   - C. Sheathless (hemostasis device available for post insertion bleeding) |
3. Interface Fiberoptic IAB connections to the IABP | |
   - A. Slide blue fiberoptic connection in the IABP |
   - B. Insert calibration key (black key) |
   - C. Verify light bulb change from blue to green |
   - D. Describe how to do a manual zero |
4. Balloon Preparation | |
   - A. Place IAB guidewire on the field |
   - B. Attach one-way valve to Gas lumen (do not remove until IAB is in position) |
   - C. Pull vacuum on IAB |
   - D. Remove IAB from the tray (immediately prior to insertion) |
   - E. Remove the packing stylet (if present) |
   - F. Flush IAB central lumen with heparinized NS solution before insertion |
5. Arterial Pressure Source | |
   - A. To zero Fiberoptic source manually:
     a) Press AP select to highlight fiber optic
     b) Press soft key under “FOS ZERO” |
   - B. To calibrate Fiberoptic source, if FOS was not zero’d prior to insertion and MAP value is erroneous:
     a) Press AP select to highlight fiber optic
     b) Press soft key under “FOS CAL”
     c) Adjust FOS MAP to actual MAP (from another AP source) |
   - C. To zero Fluid Transducer:
     a) Press AP select to highlight Xducer
     b) Open stopcock to air and off to patient
     c) Press soft key under “TRANSDUCER ZERO” (DO NOT press CAL key) |
6. Identify proper IAB positioning | |
   - A. 2nd to 3rd Intercostal Space (anterior ribs) on Fluoro/X-ray |
   - B. Left radial (or ulnar) pulse present |
   - C. Urine output present (if Foley in place) |

© 2005 Arrow International, Inc. All rights reserved. CRB-05-0173
Performance Checklist for Arrow International AutoCAT®2 Series IABP

Name: ________________________________________________________________________

Instructor: _______________________________________________ Date: _______________

<table>
<thead>
<tr>
<th>Skill</th>
<th>Observed</th>
<th>Completed with Assistance</th>
<th>Completed without Assistance</th>
</tr>
</thead>
</table>

**AUTOPILOT™ MODE**

**Initial Set-up**
1. Establish Power
   a. Plug Power Cord to Wall Outlet ______ _________________
   b. Press Power On Switch ______ _________________
2. Connect Patient ECG
   a. Skin Cable ______ _________________
   b. Phono-Phono Cable (Slave) ______ _________________
3. Verify Trigger Acceptance
   a. Assist Marker on ECG ______ _________________
   b. Flashing Heart and Heart Rate ______ _________________
4. Connect Arterial Pressure
   a. Transducer Cable ______ _________________
   b. Phono-Phono Cable (Slave) ______ _________________
   c. FOS (if available) ______ _________________
5. Connect IAB Catheter ______ _________________
   a. Verify IABP Volume Setting ______ _________________
6. Initiate Pumping ______ _________________
7. Change Assist Interval (Starts in 1:1) ______ _________________

**Recorder**
1. Record Timing Strip ______ _________________
2. Change Recorder Paper ______ _________________

**ECG**
1. Adjust ECG Gain ______ _________________
2. Change ECG Source ______ _________________

**Arterial Pressure**
1. Zero FOS ______ _________________
2. Zero Arterial Pressure Transducer ______ _________________
3. Change AP Scale ______ _________________
4. Set AP Alarm (optional) ______ _________________

**Assess Balloon Pressure Waveform**
Characteristics ______ _________________

© 2005 Arrow International, Inc. All rights reserved. CRB-05-0173
## 11. Skills Checklist

<table>
<thead>
<tr>
<th>Skill</th>
<th>Observed</th>
<th>Completed with Assistance</th>
<th>Completed without Assistance</th>
</tr>
</thead>
</table>

**Assess Patient Response**
1. Assess Diastolic Augmentation  
   - Completed with Assistance  
   - Completed without Assistance

2. Assess Pressures/Timing
   a. SYS  
   b. ASYS  
   c. DIA  
   d. ADIA

3. Assess IAB Sizing
   - Completed with Assistance  
   - Completed without Assistance

**Alarms**
Verify Alarms On  
- Completed with Assistance  
- Completed without Assistance

**Helium**
1. Assess Helium Tank Level on Screen  
   - Completed with Assistance  
   - Completed without Assistance

2. Change Helium Tank
   - Completed with Assistance  
   - Completed without Assistance

**Empty Condensation Bottle**  
- Completed with Assistance  
- Completed without Assistance

**Initiate Battery Operation**  
- Completed with Assistance  
- Completed without Assistance

**Adjust Balloon Volume**  
- Completed with Assistance  
- Completed without Assistance

**OPERATOR MODE**

Activate Appropriate Trigger For:
1. Clear ECG, QRS Normal, Rate 90  
   - Completed with Assistance  
   - Completed without Assistance

2. Clear ECG, QRS Wide, Rate 110  
   - Completed with Assistance  
   - Completed without Assistance

3. Noisy ECG with Excessive Interference  
   - Completed with Assistance  
   - Completed without Assistance

4. AV Sequential Pacemaker-Fixed Rate  
   - Completed with Assistance  
   - Completed without Assistance

5. Atrial Pacemaker-Fixed Rate  
   - Completed with Assistance  
   - Completed without Assistance

6. Irregular Rhythm  
   - Completed with Assistance  
   - Completed without Assistance

7. CPR  
   - Completed with Assistance  
   - Completed without Assistance

**Timing**
Assess Inflation and Deflation adjust as necessary  
- Completed with Assistance  
- Completed without Assistance
1. The landmark on the arterial pressure waveform used to time the inflation point is
   A. The dicrotic notch
   B. The systolic peak
   C. The end diastolic pressure
   D. Diastolic augmentation

2. A physiological effect of early inflation of the balloon may be
   A. Potential premature closure of the aortic valve
   B. Suboptimal diastolic augmentation
   C. Potential retrograde coronary and carotid blood
   D. Potential renal artery hypoperfusion

3. The waveform characteristics of late inflation include
   A. Inflation prior to the dicrotic notch
   B. Diastolic augmentation encroaches into systole
   C. Rate of rise of assisted systole is prolonged
   D. Inflation of the balloon after the dicrotic notch

4. A trigger is defined as
   A. Adjustment of inflation and deflation
   B. Pressure exerted to inflate IAB
   C. Event that purges console automatically
   D. Signal to identify the onset of the next cardiac cycle

5. The trigger of choice for a HR < 130bpm with a normal QRS width is
   A. AP (arterial pressure)
   B. Peak
   C. A Pace
   D. Pattern

6. The following represents a cause of a HELIUM LOSS alarm
   A. Kinked line
   B. IAB abrasion
   C. IAB malpositioned
   D. All of the above
Answers:

1. A
2. A
3. D
4. D
5. D (or B)
6. D
13. Program Evaluation

**Arrow International – Timing, Triggering and Troubleshooting**

Instructor: ____________________________________________

Date: ____________________________________________

Please help us evaluate this program so that we may better meet the needs of future participants.

Check the appropriate box.

Hospital: ____________________________________________

---

**AutoCAT®2 Series IABP**

<table>
<thead>
<tr>
<th>Program Evaluation</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Program met the stated objectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Content covered topic adequately</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Rate overall quality of this program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Rate overall quality of speaker(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Rate the program facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. How well did this program meet you personal objectives?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. I can incorporate program content into my practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Speaker Evaluation**

| 1. Objectives – Stated Objectives Met |   |   |   |   |    |
| 2. Audiovisual – Contributed to Presentation |   |   |   |   |    |
| 3. Content – Relevance of Content to Objectives |   |   |   |   |    |
| 4. Practice – Validate/Change Practice |   |   |   |   |    |

Comments: ____________________________________________

© 2005 Arrow International, Inc. All rights reserved. CRB-05-0173
Caution: Federal law restricts this device to sale by or on order of a physician. Contents of unopened, undamaged package are sterile. Disposable. Refer to package insert for current warnings, indications, contraindications, precautions, and instructions for use.

www.arrowintl.com

To locate an Arrow Distributor or for ordering information, contact Customer Service at:

United States
Tel: 800.523.8446
Fax: 800.343.2935

International
Tel: +1.610.655.8522
Fax: +1.610.655.8566

Distribution Worldwide:
Arrow Sales offices are located in Belgium, Canada, Czech Republic, France, Germany, Greece, India, Italy, Japan, Mexico, Netherlands, Slovakia, South Africa, Spain, and the United States. Corporate Headquarters address: Arrow International, Inc., 2400 Bernville Road, Reading, PA 19605 U.S.A. Tel: 610-378-0131